During fail data collection, a tester collects information that is useful for defect diagnosis. If fail data collection can be terminated early, the tester time as well as the volume of fail data will be reduced. Test reordering can enhance the ability to terminate the process early without affecting the quality of diagnosis. In this paper, test reordering targets logic defects based on information that is derived during defect diagnosis. The defect diagnosis procedure is enhanced to identify tests that are useful for defect diagnosis across a sample of faulty instances of a circuit. Tests that are determined to be useful for more faulty instances of a circuit are placed earlier in the test set based on the expectation that the same tests will be useful for other faulty instances of the circuit. The experimental results for logic defects in benchmark circuits support the effectiveness of this approach and indicate that test reordering helps to terminate fail data collection early without impacting the diagnosis quality.