Querying uncertain data has become a prominent application due to the proliferation of user-generated content from social media and of data streams from sensors. When data ambiguity cannot be reduced algorithmically, crowdsourcing proves a viable approach, which consists of posting tasks to humans and harnessing their judgment for improving the confidence about data values or relationships. This paper tackles the problem of processing top-K queries over uncertain data with the help of crowdsourcing for quickly converging to the realordering of relevant results. Several offline and online approaches for addressing questions to a crowd are defined and contrasted on both synthetic and real data sets, with the aim of minimizing the crowd interactions necessary to find the realordering of the result set.
System Configuration:
HARDWARE REQUIREMENTS:
Hardware – Pentium
Speed – 1.1 GHz
RAM – 1GB
Hard Disk – 20 GB
Key Board – Standard Windows Keyboard
Mouse – Two or Three Button Mouse
Monitor – SVGA
Crowdsourcing for Top-K Query Processing over Uncertain Data Crowdsourcing for Top-K Query Processing over Uncertain Data Crowdsourcing for Top-K Query Processing over Uncertain Data Crowdsourcing for Top-K Query Processing over Uncertain Data PPT BASEPAPERS